Finite element modeling and analysis at MEGA

By:
Balan Mirel
MEGA FEA Department
CONTENT:

1. FEA Scope at MEGA
2. FEA Workflow
3. FEA Team
4. Team Communication chart
5. Projects portfolio
1. FEA Scope at MEGA

<table>
<thead>
<tr>
<th>Model</th>
<th>Analysis</th>
<th>Input needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full modeling</td>
<td>Full model strength analysis and optimization using 2D elements</td>
<td>Construction plan drawings, IGES shell surface or Lines plan drawing</td>
</tr>
<tr>
<td></td>
<td>Full model vibration analysis and optimization using 2D elements</td>
<td>Construction plan drawings, IGES shell surface or Lines plan drawing, information's about the propeller and engine (number on blades, rpm)</td>
</tr>
<tr>
<td></td>
<td>Full model buckling analysis and optimization using 2D elements</td>
<td>Input needed: Construction plan drawings, IGES shell surface or Lines plan drawing</td>
</tr>
<tr>
<td>Detailed modeling</td>
<td>Engine girders stiffness analysis using 3D elements</td>
<td>Nupas Model/Construction plan drawings, Engine mounting stiffness</td>
</tr>
<tr>
<td></td>
<td>Crane foundation and related structure analysis (strength and buckling)</td>
<td>Nupas Model/Construction plan drawings, Crane information (vertical force, bending moment, slewing torque)</td>
</tr>
<tr>
<td></td>
<td>Winch foundation and related structure analysis (strength and buckling)</td>
<td>Nupas Model/Construction plan drawings, Winch reaction forces</td>
</tr>
<tr>
<td></td>
<td>Side doors and openings strength analysis using 3D elements</td>
<td>Nupas Model/Construction plan drawings, still water& wave bending moment, shear force</td>
</tr>
<tr>
<td></td>
<td>Superstructure vibration analysis</td>
<td>Nupas Model/Construction plan drawings, information's about the propeller and engine (number on blades, rpm)</td>
</tr>
<tr>
<td></td>
<td>Mast vibration analysis using 3D elements or 2D&1D elements model</td>
<td>Nupas Model/Construction plan drawings, information's about the propeller and engine (number on blades, rpm)</td>
</tr>
<tr>
<td></td>
<td>Emergency towing plan check using 3D elements</td>
<td>Nupas Model/Construction plan drawings, emergency towing plan</td>
</tr>
<tr>
<td></td>
<td>Hoisting plan check using 3D elements</td>
<td>Nupas Model/Construction plan drawings, hoisting plan</td>
</tr>
<tr>
<td></td>
<td>Towing bit/eye and related structure analysis (strength and buckling)</td>
<td>Nupas Model/Construction plan drawings, SWL towing bitt/eye</td>
</tr>
<tr>
<td>Nonlinear</td>
<td>Fender nonlinear analysis using implicit nonlinear analysis</td>
<td></td>
</tr>
</tbody>
</table>
Workflow detailed modeling:

- Receive Nupas model/.step files/ Autocad Drawings
- Import into NX the structure
- Import 2D/3D details
- Simplify the structure according to the structural requirements
- Check and fix the wrong modeled solids
- Make the fem and simulation model – apply boundary conditions, loads, material properties
- Analyze the model
- Apply refinements and re-mesh
- Obtain final results
2. FEA Workflow - Cont’d
3. FEA Team

Mega FEA Team: trained and certified by DAMEN RESEARCH

- **START:** September 2012;
- Number of projects in which the team was involved: 11 (eleven) DSGo projects, 3 (three) Research projects and 4 (four) training projects;
- No. of team members: 3 engineers and 3 trainees;

Team Skills

Current:
- Linear static analysis;
- Buckling analysis;
- Natural frequency analysis;
- Solid and shell modeling in NX for local analyses;
- Shell modeling in NX for global analyses;
- Nonlinear fender analysis;
- NUPAS detailed modeling.

Perspective
- Advanced nonlinear analysis;
- Frequency/forced response;
- Develop and implement Distributed Memory Parallel (DMP) for large analysis in NX.
4. Teams Communication chart

- MEGA Management Team
- ICT Department
- Hull and Piping & Mechanical Departments
- DAMEN RESEARCH Department
- DSNS Engineering
- FEA Department
- MDEM FEA Department
Team principles:

INNOVATION
SUCCESS
EVALUATION
DEVELOPMENT
GROWTH
SOLUTION
PROGRESS
MARKETING
5. Projects portfolio

- YN512504/ASD3212-Crane foundation analysis

- YN556064/RSV8318-Natural frequency analysis

- YN556064/RSV8318-LARS foundation analysis
5. Projects portfolio - Cont’d

- YN522800/WAFL6312-Natural frequency analysis

- YN540391/SPA5509-Natural frequency analysis

- YN553014/DOC7500-Engine girder stiffness analysis
5. Projects portfolio - Cont’d

- YN522054-Spudpole-Stess analysis

- JSS-engine foundation stiffness analysis-Training project

- YN556064/RSV8318-AHC winch foundation analysis
5. Projects portfolio - Cont’d

- YN512500-Ears of fore guide post stress analysis

- YN512200/ASD Tug 2412-Calculation new Rolls-Royce thruster

- YN545000/Tractor tug 2412-Hoisting plan analysis
- Correlation study between strain gauge measurements and nonlinear FEM analysis
- Crash analysis nonlinear
Thank you for your attention!